
SPIS Lecture, Week 2, Monday 10:15

Counting Exercises:

1. Call out increasing numbers starting with 1 to

count the number of students in the room

a. Counting in a loop

b. 48 student took 48 rounds (or 48 loop

iterations)

2. More efficient counting:

a. Each student stands and has number 1.

b. Each round:

i. Find a standing student

ii. Add numbers

iii. Oldest remains standing

c. 48 students took 6 rounds (or 6 loop

iterations

3. Counting recursively

a. In turn, each student turn their chair to the

student next to them, points to them and

asks the question, “How many students are

you away from the last student?”

i. While chair is turned, this simulated that

the function is still executing and the

student who asked the question is still

waiting for an answer.

ii. All students with chairs turned simulate

a “stack” of function calls tracked on the

run-time stack.

b. The last student is 1.

i. This is the base case of the recursion

c. In turn, each student responds to their caller

by adding one to the number called out by

the prior student and then “return”s their

chair to its original position.

i. This is simulating the recursive function

returning and the calling function

resuming executing and returning to its

caller

Observations:

 Loop – performing the same operating on a

series of elements, as in counting 1.

- No termination means an infinite loop.

 Recursion – performing a piece of a task,

recursively calling a method to complete the task.

- A base case is needed,

- Perform task once, delete to recursive

function to perform remaining task,

- No termination means infinite recursion.

Both recursion and loops give you repeatability.

- Choice is often “loop or recursion” not

“loop of recursion.”

- Recursion often involves less code

Arrays:

- Multiple item allocation of memory, each

item is identical in size to the others.

o Example: parking lot spaces, chairs in

the lecture room

- Each array element has an index to

location that item in the array.

- The array’s index starts with 0 since the

first item is 0 elements from the beginning.

Python code to print a string:

print “abc”

Output: abc

Python code to print a string

var = “abc”

index = 0

while index < len (var):

 print (var[index], end='')

 index = index + 1

Output: abc

Python code to print a string

def print_in_a_loop (var):

 index = 0

 while index < len (var):

 print (var[index], end='')

 index = index + 1

print_in_a_loop ("abc\n")

Output: abc

Python code to print a string

def print_string (var, index):

 if index < len (var):

 print (var[index], end='')

 print_string (var, index + 1) # recursive call

print_string ("abc\n", 0)

Output: abc

Python code to print a string

def print_string (var, index):

 if index < len (var):

 print_string (var, index + 1) # recursive call

 print (var[index], end='')

print_string ("abc\n", 0)

Output: (string is printed in reverse order, newline

printed first)

cba

